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Abstract
Using both the second-order correction of perturbation theory and the
exact computation due to Dalgarno–Lewis, we compute the second-order
noncommutative Stark effect, i.e., shifts in the ground-state energy of the
hydrogen atom in the noncommutative space in an external electric field. As
a side result we also obtain a sum rule for the mean oscillator strength. The
energy shift at the lowest order is quadratic in both the electric field and the
noncommutative parameter θ . As a result of noncommutative effects the total
polarizability of the ground state is no longer diagonal.

PACS numbers: 03.65.−w, 11.10.Nx

1. Introduction

When an atom is subjected to an external electric field in a given direction the energy levels of
the atom shift; this is the Stark effect (see, e.g., Bethe and Salpeter (1957)). If the electric field
is weak the shift in the energy level is linear in the electric field, by parity arguments there will
be shift only between states of opposite parity so the linear shift depends on the presence of
degenerate states. Therefore the ground-state first-order effect vanishes and hence the energy
shifts start at the quadratic order, the quadratic Stark effect. In both linear and quadratic Stark
effects one uses the ordinary perturbation theory. If the external field is strong, perturbation
theory is not justified, and one may use the WKB method (see, e.g., Bekenstein and Krieger
(1969)). The combined Coulomb and the external potential felt by an electron implies that
there are no absolutely stable bound states, and there is a possibility of quantum tunnelling. If
the field is increased enough, then the states become unbound, leading to the ionization (see,
e.g., Yamabi et al (1977)).

Here we are interested in studying the Stark effect in noncommutative quantum mechanics
of the H-atom in the ground state for which one can safely use the ordinary perturbation
theory. In this direction, the linear Stark effect has been studied by Chaichian et al (2001a)
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in which they showed that there is no Stark shift linear in the electric field induced by the
noncommutativity of the coordinates and in particular the ground state remains unchanged,
in the linear Stark effect. In the physical literature there are many papers dealing with
noncommutative analogues of different dynamical models (see, e.g., Chaichian et al (2001b),
Falomir et al (2002)). Like the ordinary Stark effect of the hydrogen atom, in order to obtain
correction for ground-state energy one has to go to the second order in perturbation theory. In
this paper we compute the noncommutative quadratic Stark energy shift using two methods.
The first one is to use the second order in perturbation theory that we just mentioned, which
contains an infinite summation over the excited states. The other method available is the
Dalgarno–Lewis method (Dalgarno and Lewis 1955) which is exact and does not contain any
summations over the excited states. In doing so we show that there is a noncommutative
quadratic Stark effect which results in a lowering of the ground-state energy like the ordinary
quadratic Stark effect. Both of these energies contribute additively to the polarization of the
hydrogen atom and as a result of the noncommutativity of the polarization tensor is no longer
diagonal. When equating the two expressions for the noncommutative quadratic Stark shift in
energy obtained by the two methods, we obtain the sum rule on the mean oscillator strength
for the Lyman series.

2. The noncommutative quadratic Stark effect for the ground state of the H-atom

Noncommutative quantum mechanics is defined through the following commutation relations:

[xi , xj ] = iθij

[xi , pj ] = ih̄δij

[pi , pj ] = 0

(1)

where θij is the noncommutative parameter and is of dimension of (length)2. It is convenient,
however, for computational reasons to change to the new coordinate system,

xi = xi +
1

2h̄
θij pj , pi = pi , (2)

where the new coordinates satisfy the usual canonical commutation relations:

[xi, xj ] = 0, [xi, pj ] = ih̄δij , [pi, pj ] = 0. (3)

When the electron in the H-atom is subjected to a uniform electric field E in the positive
z-direction, its potential energy is eEz, therefore using equation (2) the total Hamiltonian of
this system that takes into account the noncommutative coordinates is

H = p2

2m
− e2

r
+ eEz +

e

4h̄
(�θ × �p) · �E. (4)

The term eEz is the ordinary Stark potential whereas the term + e
4h̄ (�θ × �p) · �E in the above

equation corresponds to the noncommutative Stark potential energy. The components of the
vector �θ are written in terms of the noncommutative parameter θij as θi = εijkθjk . Therefore,
(�θ × �p)i = −2θijpj . As a result the noncommutative Stark potential, apart from the θij term,
is the interaction between the induced electric dipole moment of the electron and the external
electric field. Note that, though the model in question is introduced in a noncommutative guise
it is essentially commutative. It is well known that at first order in perturbation theory there is
no shift in the ground-state energy of the H-atom due to the perturbing term eEz. Similarly
the noncommutative Stark perturbing potential does not change the ground-state energy in the
first order of perturbation theory (Chaichian et al 2001a). Like the ordinary Stark effect one
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needs to go to the second order in perturbation theory in order to find the correction to the
ground-state energy, this is the quadratic Stark effect. Using the fact that pi = m

ih̄ [xi,H0],

where H0 = p2

2m
− e2

r
the correction to the ground-state energy then is

E
2(NC)
1 =

∑
n�=1,l,m

|〈n, l,m|H(NC)|1, 0, 0〉|2
E0

n − E0
1

=
∑

n�=1,l,m

|〈n, l,m| e

4ih̄2 ( �E × �θ)1([x1,H0] + ( �E × �θ)2[x2,H0])|1, 0, 0〉|2
E0

n − E0
1

, (5)

where we have used (�θ × �p) · �E = ( �E × �θ) · �p. The states |n, l,m〉 form a complete set

of eigenstates of the free Hamiltonian, H0|n, l,m〉 = E0
n|n, l,m〉 and E0

n = E0
1

n2 , E0
1 is the

ground-state energy. Using the identities x ± y = r sin θ exp(±iφ) = ∓r
√

8π
3 Y±1

1 , where
Ym

l are the spherical harmonics for l = 1 and m = ±1. Then x, y in terms of the spherical
harmonics are

x = r

√
2π

3

[
Y−1

1 (θ, φ) − Y1
1(θ, φ)

]

y = ir

√
2π

3

[
Y−1

1 (θ, φ) + Y+1
1 (θ, φ)

]
,

and hence by orthonormality of the spherical harmonics, the selection rules are, �m =
±1,�l = 1. Using the selection rules and doing the angular integration, equation (5)
becomes

E
2(NC)
1 = e2m2E0

1

16h̄4 | �E × �θ |2 1

3

∑
n�=1

n2 − 1

n2

∣∣∣∣
∫ ∞

0
Rn1r

3R10 dr

∣∣∣∣
2

, (6)

where Rnl are the radial wavefunctions for the hydrogen atom, corresponding to the principal
quantum number n and the orbital quantum number l. The radial integration is already
computed and is given in Bethe and Salpeter (1957), the results are∣∣∣∣

∫ ∞

0
Rn1r

3R10 dr

∣∣∣∣
2

= 28n7(n − 1)2n−5

(n + 1)2n+5
a2,

where a = h̄2

me2 = − e2

2E0
1

is the Bohr radius. Finally, the noncommutative quadratic Stark effect

for the hydrogen atom at the ground state reads

E
2(NC)
1 = − e2m

32h̄2 | �E × �θ |2 1

3

∑
n�=1

28n5(n − 1)2n−4

(n + 1)2n+4
. (7)

Therefore there is a contribution to the Stark effect from the noncommutativity of coordinates
which were not present in the first order in perturbation theory. Note also like the ordinary
Stark effect the noncommutative quadratic Stark effect also results in a reduction of the ground-
state energy. This means that the contribution to the Stark effect would be the addition of the
usual quadratic Stark effect E

2(C)
1 = − 9a3

4 | �E|2 and that given by equation (7). There is no
contribution from the crossed term of the full potential,

VStark = eEz +
e

4h̄
(�θ × �p) · �E.

One can check this using the selection rules. In the following section using the method due to
Dalgarno and Lewis (1955), we will show that the exact contribution to the noncommutative
quadratic Stark effect is E

2(NC)
1 = − e2m

32h̄2 | �E × �θ |2.
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3. The exact computation

In this section we will briefly review the method due to Dalgarno and Lewis (1955), then use
it to carry out the computation for the noncommutative quadratic Stark effect. In this method
the goal is to find the perturbed ground state ψ1

1 which is assumed to be related to the ground
state in the form, ψ1

1 = Fψ1 where F is a scalar function of the variables that occur in the
Hamiltonian, and then use the relation, E

2(NC)
1 = 〈ψ1|H ′∣∣ψ1

1

〉 − E
1(NC)
1

〈
ψ1

∣∣ψ1
1

〉 = 〈
ψ1

∣∣H ′∣∣ψ1
1

〉
(the first-order correction E

1(NC)
1 = 0) to compute the second-order correction, H ′ being

the noncommutative perturbing Hamiltonian and ψ1 is the ground-state wavefunction for the
hydrogen atom. The first-order equation in perturbation theory is given by

(H0 − E1)ψ
1
1 +

(
H ′ − E1

1

)
ψ1. (8)

Setting ψ1
1 = Fψ1 where F is a scalar function of the variables that occur in the Hamiltonian,

and defining a reduced potential by V ′ = H ′ − E1
1 = H ′ − 〈ψ1|H ′∣∣ψ1

1

〉
then the first-order

perturbation equation it can be written as

[H0, F ]ψ1 + V ′ψ1 = 0, (9)

where H0 = − h̄2

2m
∇2 + u(r) is the free Hamiltonian for the H-atom and u(r) is the Coulombic

potential. Because u(r) and F commute then one can show (e.g., see Hmmeka (1981)) that
the function F is the solution to the following differential equation:

h̄2

2m
∇2Fψ1 − 2

a
�Fψ1 =

(
V ′ψ1

ψ1

)
, (10)

where � is the differential operator defined by

� = x

r

∂

∂x
+

y

r

∂

∂y
+

z

r

∂

∂z
. (11)

The reduced potential in our case is the noncommutative Stark potential as the first-order
correction E

1(NC)
1 = 0. By acting by the operator V

(NC)
Stark = e

4h̄ (�θ × �p) · �E on the ground-state
wavefunction, ψ1 = (πa3)−1/2 exp −(r/a) the differential equation (10) is then

− h̄2

2m
∇2F − 2

a
�F = e

4i

[
( �E × �θ)x

x

r
+ ( �E × �θ)y

y

r

]
. (12)

From the following relations

∇2(xr) = 4x
r
, �(xr) = 2x

∇2(x) = 0, �(x) = x
r

∇2(yr) = 4y

r
, �(yr) = 2y

∇2(y) = 0, �(y) = y

r
,

the solution to our differential equation would be of the form

F = αx + β(xr) + γy + δ(yr), (13)

where α, β, γ and δ are constants to be found. Substituting this expression into equation (12),
then we find

F = em

4ih̄2 [( �E × �θ)xx + ( �E × �θ)yy]. (14)
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Having found the expression for F, the second correction to the ground-state energy will be
given by an integration rather than summation,

E
2(NC)
1 = 〈ψ1|H ′|Fψ1〉

= em

4ih̄2 〈ψ1|[( �E × �θ)xpx + ( �E × �θ)ypy][( �E × �θ)xx + ( �E × �θ)yy]|ψ1〉

= − em

16h̄2

[
| �E × �θ |2 + |( �E × �θ)x |2〈ψ1|x ∂

∂x
|ψ1〉 + |( �E × �θ)y |2〈ψ1|y ∂

∂y
|ψ1〉

]
.

(15)

Note that we have dropped the terms
〈
ψ1y

∂
∂x

ψ1
〉

and
〈
ψ1yx ∂

∂y
ψ1

〉
as they vanish by

orthogonality of the spherical harmonics. Writing both x and y in the spherical harmonics
then doing the angular and radial integration we obtain the following exact result for the
noncommutative quadratic Stark effect:

E
2(NC)
1 = − e2m

32h̄2 | �E × �θ |2. (16)

Comparing this result with that obtained in the last section using the second-order perturbation
theory given by equation (7) we conclude that

1

3

∑
n�=1

28n5(n − 1)2n−4

(n + 1)2n+4
= 1. (17)

Indeed this is the case, this sum is nothing but the sum rule of the mean oscillator strength for
the Lyman series (Bethe and Salpeter 1957) which is equal to 1 as one can check by setting
l = 0 in equation (61.5) for the ground state (Bethe and Salpeter 1957). Therefore, equating
the exact computation for the energy contribution in the noncommutative quadratic Stark effect
with that computed in the last section we derived the sum rule for the mean oscillator strength.
This quantity is a dimensionless quantity and proportional to the frequency times the dipole
moment.

Adding the noncommutative quadratic Stark shift energy to the ordinary Stark shift we
have

EStark
1 = −9a3

4
| �E|2 − e2m

32h̄2 | �E × �θ |2 − 3555a7

64
| �E|4 + O(| �E|6). (18)

This energy in terms of polarizability is

EStark
1 = − 1

2εijEiEj , (19)

where εij is the polarizability tensor. In general εij is a function of external field, however, up
to second order it is electric field independent. One can easily read off εij from equation (18):

εij = 9

2
δij a

3 +
e2m

16h̄2 (θ2δij − θiθj ). (20)

From this equation we make the following remarks, first noncommutative polarizability
is not proportional to δij it has a more complicated tensorial structure. In other words the
noncommutative Stark effect is direction dependent. It is due to the fact that an electron (in
general any charged particle) in noncommutative space also has an electric dipole moment.
The second remark is that ε

(NC)
ij has a zero eigenvalue (εij θj = 0). Physically it means that

the noncommutative Stark effect vanishes if the external electric field is parallel to �θ . This is
explicitly seen from equation (16). The third remark we make is of observational significance;
although the present experimental data on the Stark effect are not updated and precise
enough to improve the current bounds on noncommutativity coming from other experiments
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(Chaichian et al (2001a)). One may still study observational prospects of the noncommutative
Stark effect. It is convenient to present our results as the the ratio of noncommutative to
commutative results, i.e.

�NC = E(NC)

EC

=
e2m

32h̄2 | �E × �θ |2
9a3

4 | �E|2 = |�θ |2
72a4

sin2 φ,

(21)

where φ is the angle between �θ and �E. It is worth noting that the above ratio is independent
of αQED. If the precision of the Stark effect is PStark, the ratio �NC should be within the error
bars of the experiment or �NC 
 PStark. From this one can infer an upper bound on θ , or
equivalently a lower bound on the noncommutativity scale.

4. Conclusion

In this paper we have shown that there is a contribution to the quadratic Stark effect due to
the noncommutativity of the coordinates. We have obtained the correction to the ground-state
energy using two methods and by combining the two we have derived the sum rule of the
mean oscillator strength. If the external electric field �E is parallel to �θ then there will be no
shift in the ground-state energy of the H-atom, therefore in this case we have only the ordinary
quadratic Stark effect. If the two vectors are not parallel then the polarization of the ground state
is no longer diagonal. From which we may infer some lower bound on the noncommutativity
scale.
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